Innovative Research for Translational Impact

The WISB research programme combines the principles of bioscience, engineering, computer science and physical science in theoretical and experimental synthetic biology (SB) research.

We are developing next-generation synthetic biology tools and systems, biosynthetic pathways, synthetic communities of microbes, and plant-microbe interactions.

Our research will help to drive advances that are of benefit to wider society, for example in pharmaceuticals, high-value and commodity chemicals (HVCCs), treatments for disease, environmental bioremediation, and food security. It will also provide us with a better understanding of some of the key mechanistic and evolutionary principles underpinning living systems.

The research programme includes three applied themes which are underpinned by a central core theme. These themes address specific, industrially relevant design challenges across the scales of biological organisation: genetic circuits, pathways, and multi-cellular systems.

Research in Ethical, Legal and Societal Aspects (ELSA) is embedded in our research activities. WISB is committed to the principle of Responsible Research and Innovation (RRI).

PREDICTIVE BIOSYSTEMS ENGINEERING

Addresses the unpredictability of synthetic gene circuits

WISB researchers are developing new types of synthetic biomolecular circuitry for use in prokaryotic and eukaryotic hosts. In addition, a number of features of living cells, including stochasticity and circuit-host interactions, introduce variables into the function of biomolecular circuitry that limit their robustness and scalability, thus significantly constraining the potential of SGCs. Advanced computer design tools, combined with novel experimental approaches and state-of-the-art technology, are being used to find solutions to these major challenges. The knowhow developed in this Theme is fed into our other Themes.

Read More

ENGINEERING BIOSYNTHETIC PATHWAYS

Addresses the challenges of building tailor-made and fully controllable biosynthetic pathways.

WISB researchers are developing novel SB tools for engineering biosynthetic pathways to generate structurally complex bioactives in microorganisms such as Streptomyces sp. and Saccharomyces cerevisiae. Rate control engineering, combined with high-resolution systems analysis, enables us to create highly efficient synthetic pathways.

READ MORE

ENGINEERING MICROBIAL COMMUNITIES

Beyond sub-cellular circuitry and exploring the design of multi-cellular systems

Engineered synthetic microbial communities comprise (multiple) defined species that are functionally interlinked using rationally engineered metabolic, genetic and physical interactions. The resulting systems provide catalytic activities of industrial value or in situ delivery of bioactive molecules.

READ MORE

ENGINEERING MICROBIAL EFFECTOR SYSTEMS IN PLANTS

Developing tools for engineering plant pathways to improve plant species relevant to food security.

WISB researchers are developing new types of synthetic control system in which synthetic effectors (synEffectors), derived from natural effectors of plant pathogens and mutualists, which can be targeted to bespoke pathways.  In this way, pathways are re-engineered to deliver temporal and spatial control of bespoke plant responses in an orthogonal fashion, i.e. without causing trade-offs in other natural responses.  This work will lead to enhanced properties that improve, for example, plant resistance to stress.

READ MORE

© Copyright WISB 2015 | All Rights Reserved | Website by Adao*